Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.

نویسندگان

  • Appala Raju Badireddy
  • Ernest M Hotze
  • Shankar Chellam
  • Pedro Alvarez
  • Mark R Wiesner
چکیده

The production of two reactive oxygen species through UV photosensitization of polyhydroxylated fullerene (fullerol) is shown to enhance viral inactivation rates. The production of both singlet oxygen and superoxide by fullerol in the presence of UV light is confirmed via two unique methods: electron paramagnetic resonance and reduction of nitro blue tetrazolium. These findings build on previous results both in the area of fullerene photosensitization and in the area of fullerene impact on microfauna. Results showed thatthe first-order MS2 bacteriophage inactivation rate nearly doubled due to the presence of singlet oxygen and increased by 125% due to singlet oxygen and superoxide as compared to UVA illumination alone. When fullerol and NADH are present in solution, dark inactivation of viruses occurs at nearly the same rate as that produced by UVA illumination without nanoparticles. These results suggest a potential for fullerenes to impact virus populations in both natural and engineered systems ranging from surface waters to disinfection technologies for water and wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical framework for nanoparticle reactivity as a function of aggregation state.

Theory is developed that relates the reactivity of nanoparticles to the structure of aggregates they may form in suspensions. This theory is applied to consider the case of reactive oxygen species (ROS) generation by photosensitization of C(60) fullerenes. Variations in aggregate structure and size appear to account for an apparent paradox in ROS generation as calculated using values for the ph...

متن کامل

Functionalized fullerene materials (fullerol nanoparticles) reduce brain injuries during cerebral ischemia-reperfusion in rat

Aim: Oxidative stress plays a crucial role in the pathophysiology of ischemic stroke. Since water-solublefullerene derivatives act as the potent scavenger of oxygen free radicals in biological systems, we aimedto investigate the possible protective effects of fullerol nanoparticles on brain infarction and edema intransient model of focal cerebral ischemia in rat.Materials & Methods: Experiment ...

متن کامل

Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as m...

متن کامل

Antioxidative nanofullerol prevents intervertebral disk degeneration

Compelling evidence suggests that reactive oxygen species (ROS) play a pivotal role in disk degeneration. Fullerol nanoparticles prepared in aqueous solution have been demonstrated to have outstanding ability to scavenge ROS. In this report, in vitro and in vivo models were used to study the efficacy of fullerol in preventing disk degeneration. For in vitro experiments, a pro-oxidant H2O2 or an...

متن کامل

Inactivation of Heterotrophic Bacteria in Well Water Using ZVI, TiO2 and ZnO Nanoparticles

Background & Aims of the Study: The heterotrophic bacteria are widely used as a water microbial pollution index for drinking water. The aim of this study was to investigate the effect of metallic nanoparticles such as Zero Valent Iron (ZVI), Titanium dioxide (TiO2) and Zinc oxide (ZnO) on Heterotrophic Bacter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 41 18  شماره 

صفحات  -

تاریخ انتشار 2007